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ABSTRACT 

Within the last two decades , Prymnesium parvum (golden algae) has rapidly spread into 
inland waterways across the southern portion of North America and this organism has 
now appeared in more northerly distributed watersheds. In its wake, golden algae blooms 
have left an alarming trail of ecological devastation, namely massive fish kills, which are 
threatening the economic and recreational value of freshwater systems throughout the 
United States. To further understand the nature of this emerging crisis, our group inves­
tigated the chemical nature of the toxin(s) produced by P. parvum. We approached the 
problem using a two-pronged strategy that included analyzing both laboratory-grown 
golden algae and field-collected samples of P parvum. Our results demonstrate that 
there is a striking difference in the toxin profiles for these two systems. An assemblage of 
potently ichthyotoxic fatty acids consisting primarily of stearidonic acid was identified in 
P parvum cultures. While the concentration of the fatty acids alone was sufficient to 
account for the rapid-onset ichthyotoxic properties of cultured P parvum, we also detected 
a second type of highly labile ichthyotoxic substance(s) in laboratory-grown golden algae 
that remains uncharacterized. In contrast, the amounts of stearidonic acid and its related 
congeners present in samples from recent bloom and fish kill sites fell well below the 
limits necessary to induce acute toxicity in fish. However, a highly labile ichthyotoxic 
substance, which is similar to the one found in laboratory-grown P parvum cultures, 
was also detected. We propose that the uncharacterized labile metabolite produced by 
P parvum is responsible for golden algae's devastating fish killing effects . Moreover, we 
have determined that the biologically-relevant ichthyotoxins produced by P parvum are 
not the prymnesins as is widely believed. Our results suggest that further intensive efforts 
will be required to chemically define P parvum's ichthyotoxins under natural bloom 
conditions. 

© 2010 Published by Elsevier Ltd. 

1. Introduction 
* Corresponding author. Natural Products Discovery Group, Depart­

ment of Chemistry and Biochemistry, 620 Parrington Oval, Room 208, 
University of Oklahoma, Norman, OK 73019, USA. Tel.: + 1 405 325 6969: 
fax: + 1 405 325 6111. 

The marine haptophyte Prymnesium parvum (division 
Haptophyta, class Prymnesiophyceae) (Andersen , 2004), 
which is commonly referred to as 'golden algae', has played E-mail address: rhcichewicz@ou.edu (R.H. Cichewicz). 

0041-0101/$- see front matter © 2010 Published by Elsevier Ltd. 
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causal roles in scores of massive fish kills in coastal marine 
and high-to-moderate salinity inland waterways 
throughout the world (Edvardsen and lmai, 2006; Guo 
et al., 1996; Kaartvedt et al., 1991; Reich and Aschner, 
1947; Sabour et al., 2002). In the mid-1980s, the first 
reported cases documenting the entry of P. parvum into 
North America were marked by multiple large fish kill 
events in southern Texas, USA (Lopez et al., 2008; Sager 
et al., 2007). Even more troubling was the realization that 
P. parvum blooms were occurring in moderate-to-low 
salinity inland lakes, rivers, and reservoirs, which marked 
a disturbing extension in the range of suitable P. parvum 
habitats (Baker et al., 2009). Consequently, this has caused 
considerable alarm regarding the ecological and potential 
human health risks associated with golden algae. Adding to 
this concern has been the rapid rate of P. parvum's disper­
sion across the southern United States, and its northerly 
spread (Aguiar and Kugrens, 2000; Hargraves and 
Maranda, 2002). 

Despite its devastating biological effects, the identity of 
the toxic constituent(s) produced by P. parvum has not been 
definitively established (Kim and Padilla, 1977; Mariussen 
et al., 2005; Ulitzur, 1973; Ulitzur and Shilo, 1966). 
A combination of undefined proteolipids (Uiitzur and Shilo, 
1970), ceramides (Wright et al., 2005 ), saponins (Yariv and 
Hestrin, 1961 ), proteinaceous substances (Watson, 2001 ), 
plasma membrane/plastid components (Watson, 2001 ), 
and proteophospholipids (Watson, 2001) have been credi­
ted as responsible for P. parvum's toxicity. In 1982, Kozaki 
and colleagues proposed that hemolysin I (a combination of 
galactoglycerolipids) was the P. parvum toxin, but no data 
substantiating the hypothesis were offered (Kozakai et al., 
1982). Later in 1996 (Igarashi et al., 1996) and 1999 
(Igarashi et al., 1999), Igarashi and colleagues reported the 
structure determination of the high molecular weight 
cyclic polyethers prymnesin-1 ( C 107H 1s4Cl3N044) (1) (Fig. 1) 
and prymnesin-2 (Cg6H136CbN03s). Both these compounds 
are potent ichthyotoxins against Tanichthys albonubes with 
LCso values of 8 and 9 nM, respectively (Igarashi et al., 
1998). However, none of the prymnesiums have been 

prymnesin-1 (1) 

directly linked to fish kill events and our on-going LC­
ESIMS and toxin isolation studies suggest that these 
compounds do not accumulate at lethal concentrations 
under laboratory or natural field conditions. 

In this study, we used a bioassay-guided approach to 
identify some of the ichthyotoxic components in laboratory­
grown P. parvum cultures. These results were compared to 
LC-ESIMS and GC-EIMS data obtained for two recent fish kill 
and bloom events caused by golden algae. Given the 
increasing levels of human contact with P. parvum infested 
waters, extracts and pure compounds were also tested 
against a human cell line. These data support an important 
toxic role for several polyunsaturated fatty acids in 
laboratory-cultured P. parvum, but do not fully explain the 
organism's significant ichthyotoxicity at natural bloom sites. 

2. Materials and methods 

2.1. General instrumentation and experimental procedures 

HPLC was performed on a Shimadzu preparative 
instrument using a SCL-10A VP system controller, SPD-
10AV VP UV-vis detector, LC-6AD pumps, DGU-14A 
solvent degasser, and FRC-10A programmable fraction 
collector. Samples were separated over a Phenomenex C18 
Gemini column (5 Jlm, 110 A, 250 x 21.2 mm). Semi­
preparative HPLC was performed on a similar system 
using LC-10AT VP pumps and a Phenomenex C18 Gemini 
column (5 Jlm, 110 A, 250 x 10 mm). TOF-ESIMS data were 
acquired on a Waters LCT Premier instrument. Corrections 
for exact mass determinations were made automatically 
with the lock mass feature in the MassLynx software. 
Samples for mass determination were dissolved in meth­
anol and introduced for ionization using an auto injector 
with a 20 JlL loop. Samples for LC-MS were analyzed by 
interfacing the HPLC with the ESIMS instrument. GC-EIMS 
analyses were carried out on a HP 5890 Series II gas chro­
matograph and a HP 5971A MS detector using a HP 5 
(30m x 0.32 mm x 0.25 Jlm) cross-linked 5% pH Me 
siloxane column. Optical rotation measurements were 

OH 

GAT512A(2) =4J:...•~• 
HO OH 0 

GAT 768A (3) w.._o, - Y 
0 HO~..._.,....._ H, 

OH 0 
HO 

GAT770A(4) w.._o, 
0 

~ 
0 HO~..._.,....._ 

HO 

stearidonic acid (5) 

6 

Fig. 1. Structures of P. parvum derived metabolites including prymnesin-1 (1), GAT 512A (2 ), GAT 768A (3 ), GAT 770A (4 ), stearidonic acid (S), and 
( 3Z,6Z,9Z,12Z,15Z)-3,6,9,12,15-octadecapentanenoic acid ( 6 ). 
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performed on an Autopol Ill Automatic Polarmeter 
(Rudolph Research) at 589 nm and 20 oc in water. NMR 
data were obtained on a Varian VNMR spectrometer at 400 
and 500 MHz eH) and 100 and125 MHz (13C), respectively. 
All solvents were of ACS grade or better. 

2.2. Biological material 

P. parvum (UTEX LB2927) was purchased from the 
University of Texas algal collection. Cultures were grown in 
1 L Erlenmeyer flasks containing sterilized COMBO media 
with added salts (Kilham et al., 1998 ) and adjusted to pH 
7.8. The cultures were capped with vented stoppers and 
bubbled with filtered (0.22 11m) air. Cultures were main­
tained under fluorescent grow lights (12 h light/12 h dark 
photoperiod) until cell densities reached approximately 
~2 x 106 cellsfmL as determined with a haemocytometer. 

2.3. Extraction and isolation 

Several sample preparation and extraction techniques 
were tested to identify the best method for extracting the 
toxic materials. These methods included extraction of 
freeze dried culture materials, liquid-liquid partitioning of 
cultures, and extraction of filtered cells. Ultimately, we 
determined that liquid-liquid partitioning of the whole 
cultures (medium plus cells) using ethyl acetate was the 
best method since the ichthyotoxicity profile of the 
resulting extract was identical to that of P. parvum water 
both in terms of its potency and rapid-onset toxicity. The 
ethyl acetate layers from partitioning against 50 L of 
P. parvum cultures were combined and the organic extract 
( ~ 30 g) was subjected to gradient MPLC over HP20SS resin 
(30-100% methanol in water with an acetone wash). The 
fraction eluting with 100% methanol (680 mg) was found to 
retain all of the ichthyotoxic activity. Preparative reversed­
phase HPLC ( 40-100% acetonitrile in water) yielded a frac­
tion (310 mg) eluting between 75 and 100% acetonitrile 
that was ichthyotoxic. 1 H NMR and LC-ESIMS performed on 
this material showed it contained a variety of poly­
unsaturated lipids and galactoglycerolipids, but was 
devoid of any detectable prymnesiums. Fractionation of 
this material by semi-preparative reversed-phase HPLC 
consistently resulted in sample sets that quickly lost their 
ichthyotoxic activities. In addition, many of the 1H NMR 
spins representing the presumed polyunsaturated lipid 
components showed diminished intensities. After several 
failed attempts to stabilize the ichthyotoxic substances, we 
turned our focus toward purifying the three most abundant 
substances in the fraction. This resulted in the purification 
(semi-preparative HPLC eluted with 65-85% acetonitrile in 
water) of compounds 2 (75 mg), 3 (3 mg), and 4 (6 mg). 

2.4. Enzymatic hydrolysis 

For each experiment, a sample consisting of 2-3 mg of 
galactoglycerolipid was dissolved by sonicating the 
compound in 2 mL of phosphate buffer (pH 7.0) and then 
adding a lipase/esterase mixture (Sigma lipase basic kit 
62327). The sample was incubated at 30 oc for 36 h after 
which the reaction mixture was partitioned against 

dichloromethane. After removal of the solvent from the 
organic layer in vacuo, the remaining residue was resus­
pended in methanol and immediately analyzed by HPLC for 
its fatty acid content by comparison of peak retention times 
to authentic standards. For experiments in which the 
ichthyotoxicity of hydrolyzed samples were being evalu­
ated, reaction mixtures were not extracted, but instead 
were directly added to the bioassay vessels containing 
Pimephales promelas. Controls for ichthyotoxicity testing 
consisted of heat denatured lipase/esterase mixtures. 

2.5. Alkaline hydrolysis 

Compounds (2 mg in 2 mL of methanol) were reacted 
with 2 mL of 4% (wt.fvol.) sodium methoxide in methanol 
at room temperature for 30 min. Reactions were neutral­
ized by passing over acidic Dowex 50 W X 8 ion-exchange 
resin. The eluents were partitioned between methanol 
and hexanes and the methanol-soluble phases were sub­
jected to HPLC separation. 1 H NMR and optical rotation data 
([a.f0

0 - 9.3 (c 0.02, water)) were identical to those repor­
ted for (2R)-3-0-[~-o-galactopyranosyl]glycerol (Oshima 
et al., 2004 ). The hexanes soluble material was analyzed 
by GC-EIMS and the presence of methyl stearidonate was 
confirmed based on comparisons of the samples retention 
time and El fragmentation to an authentic standard. 

2.6. GC-EIMS analysis of fatty acids 

The examination of lipids was performed using 
a method similar to a process described for the trans­
esterification and GC analysis of lipid mixtures (Lepage and 
Roy, 1986). Laboratory-grown cultures were prepared for 
fatty acid mixture analysis by lyophilization followed by 
methanol extraction. After removal of the solvent in vacuo, 
100 mg samples of the organic extracts were dissolved in 
3 mL of methanol-benzene (4 :1) and placed in 1 dram 
vials. Acyl chloride (300 11L aliquots) was added to each vial 
and the vessels were capped. The mixtures were held at 
100 oc for 1 h with constant stirring. Samples were 
neutralized by adding 6 mL of 6% K2C03 to each vial. 
Samples were briefly sonicated and then centrifuged until 
phase separation occurred. The upper benzene layers were 
removed and the samples were directly submitted to 
GC-EIMS. For the culture-derived samples, the following GC 
conditions were employed: oven temperature was 100 °C, 
injection port and transfer lines were held at 250 and 
280 oc, respectively. A thermal gradient was applied as 
follows : held at 100 oc for 3 min followed by a 20 °Cfmin 
gradient to 180 oc, a second gradient of 3 °(/min to 225 oc, 
and a final gradient of 10 °(/min to 250 oc, which was then 
held for an additional 5 min at 250 oc. Due to the greater 
complexity of the field-collected samples, we further 
optimized the GC-EIMS conditions so that samples were 
held at 100 oc for 3 min followed by a 20 °(/min gradient to 
a final temperature of 280 oc, which was held for 6 min . 

2.7. lchthyotoxicity assay 

Determination of the ichthyotoxic properties of P. parvum 
extracts and pure compounds were conducted in accordance 
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with EPA-821-R-02-012 (U.S.E.P.A., 2002) (with the minor 
modifications noted below) and were approved by the 
University of Oklahoma Institutional Animal Care and Use 
Committee (IACUC). Briefly, 90 mL clear glass jars were 
loaded with 50 mL of filtered and aged tap water and 10-14 
day old P.promelas fry(three per jar) were added and allowed 
to acclimatize for 1 h. The jars were randomized and samples 
dissolved in 0.5 mL methanol were added to the jars. Controls 
consisting of vehicle-only were included in each experiment. 
Fish were maintained under 12 h light/12 h dark photope­
riods at24 oe, Due to the rapid rate in which the toxin's effects 
were observed, we monitored fish survivorshipat30 min, 1 h, 
24 h and 48 h. We observed that the 1 h mortality counts 
were typically indistinguishable from observations made at 
24 h and 48 h. Each sample was tested in triplicate and the 
results were expressed as the LC50 (the concentration lethal to 
50% of fish) ± standard deviation. The LC50 values were 
determined in SigmaPiot v10 (Systat Software Inc) using 
sigmoidal dose-response regression analyses with variable 
slope parameters. All fish were euthanized at the conclusion 
of each experiment. 

2.8. Mammalian cytotoxicity assay 

Evaluations of mammalian cell cytotoxicity were per­
formed as previously described (Mooberry et al., 2007; 
Tinley et al., 2003). Briefly, cells human (MDA-MB-435 
human cancer cell line) were plated in 96-well plates and 
allowed to adhere and grow for 24 h. Compounds were 
dissolved in ethanol and cells were incubated with 
compounds for 48 h. The cells were fixed with TCA and 
stained with sulforhodamine B. The absorbance was read 
with a plate reader at 560 nm. Dose-response curves were 
plotted and the IC50 values (the concentration required to 
inhibit cell proliferation by 50%) were calculated for each 
experiment. Each sample was tested in triplicate in 3- 5 
independent experiments and results were expressed as 
the ICso ± standard deviation. 

3. Results 

3.1 . Bioassay-guided ichthyotoxin extraction and compound 
isolation 

We have approached the search for P. parvum toxins 
using an ichthyotoxicity-based bioassay-guided method­
ology. The fathead minnow (P. promelas) has served as 
a reporter organism for detecting biologically-relevant 
toxins in golden algae cultures and samples collected at 
two fish kill sites along the Oklahoma-Texas (Lake Texoma 

February 2009) and Pennsylvania-West Virginia 
(Dunkard Creek- October 2009) borders. Our initial studies 
applying a modified Kupchan-partitioning scheme to 
cultured P. parvum demonstrated that golden algae toxins 
accumulated in the organic layer following water-ethyl 
acetate partitioning. Bioassays performed on the dried and 
then reconstituted aqueous layer (resolubilized at x 1, x10 
and x 100 its initial concentration) showed that it was 
devoid of biologically-relevant ichthyotoxic substances. In 
contrast, the x 1, x10 and x 100 reconstituted ethyl acetate 
layer retained the sample's potent ichthyotoxic properties. 

Notably, this extraction method varied significantly from 405 

the elaborate scheme reported for the isolation of intra- 406 
cellular prymnesins (Igarashi et al., 1999). 407 

The ethyl acetate soluble material collected from 50 L of 408 
cultured P. parvum was subjected to MPLC (HP20SS resin, 409 
gradient elution from 30 to 100% methanol in water 410 

followed with a 100% acetone wash). This afforded a single 411 
bioactive fraction (100% methanol) that exhibited rapid- 412 

onset toxicity against P. promelas (note : All fish died 413 

within ~ 20 min when the extract was reconstituted at x 1 414 

its original concentration). We have observed that fishQ2 41 5 
placed in water taken from highly toxic blooms and 41 6 
lab-grown cultures exhibit similar toxicological symptoms 417 

that include excessive mucus production near the gills, 41 8 
hyperventilation, and an impaired righting reflex. These 41 9 

symptoms usually appear within 10-20 min of exposure to 420 

toxic water and fish typically cease visible movement 421 

within 20-30 min. A similar set of symptoms is reportedly 422 
brought on by eicosapentaenoic acid (Marshall et al., 2003). 423 
The ichthyotoxic sample was subjected to preparative-scale 424 

HPLC (reversed-phase octadecyl silica gel, gradient from 40 425 
to 100% acetonitrile in H20) yielding a single bioactive 426 

fraction. The 1 H NMR spectrum of the toxic fraction indi- 427 

cated that the sample was composed of several metabolites 428 

exhibiting spins spanning the region from OH 0.5 to 5.5, QJ 429 
which were strikingly similar to data reported for gal- 430 

actoglycerolipid and polyunsaturated lipid toxins previ- 431 

ously isolated from certain unicellular marine organisms 432 

(Fu et al., 2004; Hiraga et al., 2002; Kobayashi et al., 1992; 433 

Stabell et al., 1993 ) including P. parvum (Kozakai et al., 434 
1982 ). Subsequent semi-preparative reversed-phase HPLC 435 

performed on a portion of the bioactive sample yielded 436 
a series of fractions that exhibited greatly diminished 437 

toxicity, which was spread across several consecutive 438 
fractions. However, even after recombining the samples, 439 
the ichthyotoxic properties of the mixed fractions were 440 

substantially reduced (> 10-fold loss of toxicity) and all 441 
samples were devoid of activity following brief storage 442 

(dried and held for < 24 hat 4 oc). Returning our attention 443 
to the parent preparative HPLC fraction, we found that it 444 

still retained toxicity and so we set about characterizing the 445 

sample's three major components. 446 

Positive-ion HRESIMS of the purified metabolites 447 

provided quasi-molecular ions [M + Na] + at mfz 535.2842 448 
( calcd for CnH44NaOg, 535.2883 ), 791.4678 ( calcd for 449 

C45H68 Na0 10, 791.4710), and 793.4801 (calcd for 450 
C45H70Na010, 793.4867) for metabolites 2 (GAT 512A), 3 451 

(GAT 768A), and 4 (GAT 770A), respectively (Fig. 1 ). In order 452 

to provide a simple naming scheme for compounds 2, 3, 453 
and 4, we have proposed the use of the term "GATs" 454 

(golden algae toxins) rather than the more lengthy IUPAC 455 

nomenclature. Each GAT is assigned a unique identifier 456 

number based on its molecular weight, which is followed 457 
by a letter code to distinguish isomers from each other. 458 

Accordingly, compounds 2, 3, and 4 have been termed GAT 459 

512A, GAT 768A, and GAT 770A, respectively. Further data 460 
obtained from 1D- eH and 13C NMR) and 2D- (COSY, HSQC, 461 

and HMBC) NMR (Supplementary Information , Table 1), 462 
controlled chemical and enzymatic degradation experi- 463 

ments, and optical rotation measurements of the metabo- 464 
lites and their respective hydrolysis products allowed us to 465 
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Table 1 
Determination of the ce ll density, stearidonic acid concent rations, and ichthyotoxicity of golde n algae cultures and water sa mples collected at rece nt 
P. parvum associated fi sh kill and bloom events. 

Sample P. parvum cells density Stearidonic acid (5 ) Ichthyotoxic 
( x 105 cells/mL ± SD ) content (J.lM ) (yesjno ) 

7 Day old laboratory culture 8.2 ± 0.7 
12 Day old laboratory culture 13.0 ± 0.4 
20 Day old laboratory culture 24.0 ± 3.0 
Bloom event in Lake Texoma, Lebanon Pool 1.2±0.1 

(Feb. 2009 ) 
Post bloom in Lake Texoma, Lebanon Pool Not detected 

Uune 2009) 
Fish kill event in Dunkard Creek drainage, 5.9 ± 1.5 

Wa na Bridge (Oct. 2009) 
Non-fish kill area in Dunkard Creek drainage, Not detected 

Upper Beaver Dam (Oct. 2009 ) 

confirm the structures of these compounds. The identities 
of these compounds were also confirmed by comparisons 
of our data with values published in the literature for 2 
(Hiraga et al., 2008 ), 3 (Kobayashi et al., 1992 ), and 4 
(Kobayashi et al., 1992). Surprisingly, 2-4 exhibited no 
ichthyotoxicity against P. promelas (up to 430 11M); 
however, we did observe modest cytotoxicity for 2 in 
a human (MDA-MB-435) cancer cell line (!Cso 
24.2 ± 5.1 11M). 

3.2. Esterase mediated liberation of ichthyotoxic fatty acids 

Further consideration of structures 2-4 suggested to us 
that GATs might function as protoxins since the poly­
unsaturated 0-alkyl esters moieties found within these 
metabolites could be readily hydrolyzed resulting in the 
release of their corresponding carboxylic acid derivatives . 
Similar metabolites have been implicated as potent toxins 
against fish (Marshall et al., 2003 ) and isolated fish cell 
lines (Fossat et al., 1999). We hypothesized that esterases, 
which are ubiquitous hydrolytic enzymes found in aquatic 
ecosystems (Mudryk and Sk6rczewski, 2006 ), could readily 
catalyze the release of polyunsaturated fatty acids from the 
2-4 (Fig. 2). We tested this by incubating 2-4 with assorted 
esterases and this resulted in the liberation of a potent 
mixture ofichthyotoxins that included stearidonic acid (5) 
and its analog 6 (Fig. 1 ). None of the controls utilizing heat 
denatured esterases showed any ichthyotoxic properties 
(Fig. 2 ). More importantly, tests performed using purified 
and commercially available 5 confirmed that the concen­
tration of this fatty acid alone was sufficient to cause rapid­
onset toxicity (LCso 21.9 ± 6.3~-LM: all fish dead in <20 min 
at 40 11M) and other distinct pathological features that are 
typically observed when P. pro me las is exposed toP. parvum 
cultures. 

3.3. Bioassay analysis of fatty acids 

We expanded our testing of 5 to include several of its 
derivatives (i.e., methyl steridonate, steridonoyl glycine, 
and stearic acid); however, none of these compounds were 
toxic to fish at concentrations of :c;40 11M (Fig. 3). An 
examination of 16 additional lipids led to the identification 
of several other fatty acids that displayed similar or 
increased potency against fish (docosahexanoeic acid : LC50 

5.8 ± 1.8 No 
3 1.2 ± 7.7 Yes 
95.2 ± 23.7 Yes 
0.06±0.02 Yes 

Not detected No 

0.44 ± 0.16 Yes 

Not detected No 

4.7 ± 1.3 11M : eicosapentaenoic acid : LC50 23.6 ± 9.0 11M. 
arachindonic acid : LC50 9.2 ± 0.8 11M. and pinolenic acid: 
LCso 18.2 ± 5.9 11M) (Fig. 3 ). These results suggest that 
a combination of a carboxylic acid and ?: 2 double bonds in 
a Z configuration are necessary to confer ichthyotoxic 
properties to fatty acids. Given the modest size of our lipid 
library, further speculation regarding the structural 
features required to impart ichthyotoxic properties to fatty 
acids is not possible at this time. The cytotoxicity of the 
lipids was also tested against human cells (MDA-MB-435 ); 
however, none of the compounds inhibited cell prolifera­
tion at concentrations :c; 10 11M. 

3.4. GC-EIMS assessment of cultured P. parvum lipids and 
comparisons to water from bloom and fish kill sites 

Tests performed by GC-EIMS on laboratory-grown 
P. parvum enabled us to determine that this organism 
produces a complex suite of lipophilic metabolites. 
A representative GC-EIMS trace showing the lipid profile of 
a 20 day old P. parvum culture is provided in Supplemental 
Information , Fig. 1 A. The bulk of this mixture was found to 
consist of a combination of saturated and unsaturated C1 6. 
C1s. C2o. and C22 compounds. In view of the toxicity data 
obtained from tests performed with our lipid library 
(Fig. 3 ), we conjecture that in addition to 5, some of the 
other polyunsaturated C20 and C22 metabolites might 
contribute to the ichthyotoxicity profile of cultured 
P. parvum. 

We also assessed the quantity of 5 in cultured P. parvum 
since this compound represented one of the most prevalent 
(second only to myristic acid) substances in the mixture 
and we were able to secure authentic samples for analytical 
comparisons. A seemingly positive correlation was 
observed between P. parvum cell numbers, the concentra­
tion of 5 in cultures, and toxicity of culture water against 
P. pro me las (Table 1 ). Specifically, we noted that as the cell 
densities of P. parvum cultures approached 106 cellsfmL, the 
levels of 5 significantly exceeded the compound's LC50 
value (Table 1 ). Next, we compared the results from 
cultured golden algae with data from field-collected water 
samples obtained from recent fish kill/bloom sites. We 
immediately discerned two substantial differences 
between laboratory-grown golden algae and field samples 
taken from recent blooms : 1) the cell density for wild P. 
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GAT 512A (2) 

mixture of esterases 

H:~O~OH 3 

mixture of 
heat denatured 

esterases 

Ho~o~o 
OH 

0-isofloridoside 
fish : not toxic 

human cells: not tested 

D OH 

stearidonic acid (5) 

Htr ~0 QH ~3C "" 

OH O I 

GAT 512A (2) "'- ~ 
fish: LC50 21 .9 ± 6.3 J.JM 

human cells: not toxic at 10 J.JM 
Fish: not toxic 

human cells: IC50 24.2 ± 5.12 J.JM ! 4% NaOMe/MeOH 

D 3 

0
,CH3 

methyl stearidonate 
fish: not toxic 

human cells: not toxic 

Fig. 2. Assess ment of the ichthyotoxicity and mammalian cell cytotoxicity of compounds obtained from the enzymatic hydrolysis of compound 2. Incubation of 2 
with a lipase/esterase mixture res ulted in the libe ration ofo-isofloridoside and s. which was ichthyotoxic. Conversion ofS to its methyl ester derivative 6 res ulted 
in the complete loss of ichthyotoxicity. Incubation of 2 with a heat denatured lipase/esterase mixture yielded unconverted 2. which was not toxic to fish. but did 
exhibit modest cytotoxicity toward mammalian cells. 

parvum populations did not reach the same high levels 
achieved in laboratory cultures and 2) the concentration of 
5 was proportionally reduced. While our analysis of field­
collected samples did confirm the presence of 5 at bloom 
and fish kill events (Supplemental Information, Fig. 1 Band 
C), its concentrations during these periods failed to reach 
toxic levels ( <0.5 11M) (Table 1 ). Interestingly, we did not 
detect 5 at nearby non-bloom sites or in water gathered 
during non-bloom periods (Table 1 and Supplemental 
Information, Fig. 10). This suggests that 5 may serve as 
a chemical marker for impending or on-going P. parvum 

blooms. 

4. Discussion 

Despite our many attempts using LC-ESIMS, direct 
injection ESIMS (positive and negative modes), and 
bioassay-guided approaches to detect prymnesins (e.g., 
compound 1 ), we were unable to generate conclusive 
evidence that these cyclic polyethers meaningfully 
contribute to the ichthyotoxic properties of laboratory­
grown or field samples P. parvum. Instead, a suite of 
uncommon polyunsaturated fatty acids and their conju­
gated galactoglycerolipid progenitors have emerged as 
important chemical agents that appreciably contribute to 
the ichthyotoxic effects of cultured P. parvum. This finding 
is supported by a substantial body of anecdotal evidence 

and extensive observations concerning the seemingly 
mixed lipophilic and amphiphilic properties of semi­
purified and purified P. parvum toxins (Shilo, 1971; Ulitzur, 
1973; Ulitzur and Shilo, 1970; Yariv and Hestrin, 1961). 
Moreover, the labile nature of the P. parvum's toxins can be 
partially explained based on numerous autooxidative 
degradation processes that polyunsaturated fatty acids can 
undergo (Schauenstein, 1967 ; VanRollins and Murphy, 
1984). Even if other ichthyotoxic compounds are bio­
synthesized by laboratory-grown P. parvum, the quantity of 
toxic fatty acids alone is sufficient to render the cultures 
lethal to fish. Although we are unaware of considerable 
human health risks attributable to dermal contact, inhala­
tion, or ingestion of galactoglycerolipids and poly­
unsaturated lipids such as 2-6, we recommend that caution 
be used while handling concentrated samples of these 
substances until further toxicological risk assessment 
studies have been conducted. 

We are confident that prymnesins are not this organ­
ism's primary toxin. This assertion is based on several key 
observations including: 1) prymnesins were not detected 
by LC-ESIMS in cultured or field-collected water samples 
where high P. parvum cell densities occurred, 2) bioassay­
guided isolation methods have not provided any fractions 
in which 1H NMR or ESIMS have yielded unequivocal 
evidence for prymnesins or prymnesin-degradation prod­
ucts, 3) the labile nature of the P. parvum toxin is an 
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Fig. 3. Library of li pids tested for ichthyotoxic properties. Compounds are arranged based on their relative potencies against P. promelas fry. 
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unlikely characteristic of prymnesins given their described 
structures and lack of apparent instabilities . While 
preliminary FABMS data hint at the presence of high 
molecular weight (prymnesin-like) compounds in certain 
P. parvum samples (weak quasi-molecular ions have been 
observed between mfz 2100 and 2500; data not shown), 
we have not been able to link the occurrence of these 
substances with ichthyotoxic effects. Moreover, the quan­
tities of these putative high molecular weight metabolites 
fall well below their reported LCso values (e.g., the detection 
limits for FABMS are generally within the low nanogram to 
picogram range; the weak intensities of the peaks we have 
observed would put the concentrations of these 
compounds at levels that are 2: 10-100-fold below their 
LC50 values). Instead, our data support the idea that golden 
algae produce another, yet uncharacterized ichthyotoxin(s ). 

Our results are particularly significant in view of the 
increasing frequency with which people are becoming 
exposed to P. parvum infested waters and the current lack 
of concern regarding human contact with this organism 
(TPWD, 2007; AGFD, 2009). Although our data provide 
convincing evidence for certain fatty acids serving as the 
predominant toxins in laboratory-grown P. parvum 
cultures, we have not yet determined the identity of the 
ichthyotoxic compound(s) responsible for the growing 
number of fish kill events in the United States. However, we 
cannot rule out the possibility that toxic fatty acids may 
exhibit ichthyotoxic effects when administered chronically 
to fish at low-dosages. Given the different growth condi­
tions experienced by P. parvum in the laboratory versus in 
nature, it is probable that golden algae produce different 
toxins under these different conditions. We will continue to 
investigate methods for preserving the integrity of the 
labile P. parvum toxin (e.g., consideration of pH (Valenti 
et al., 2009), free radicals (Marshall et al., 2003), and 
possible metal interactions (Moeller et al., 2007)) and we 
hope to report these findings in due course. 
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